ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于正交經(jīng)驗?zāi)B(tài)分解的活塞銷磨損特征提取算法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

山東省自然科學(xué)基金項目(ZR2020QF062)


Algorithm for Extracting Wear Characteristics of Piston Pins Based on Orthogonal Empirical Mode Decomposition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    由于活塞銷磨損特征信號容易受到柴油機運行過程中的環(huán)境振動噪聲干擾,構(gòu)建有效的振動信號分解和降噪算法體系是實現(xiàn)活塞銷磨損信號特征提取的有效途徑,這對于建立可靠,、精確的二元分類器模型來識別活塞銷磨損至關(guān)重要,。針對振動信號分解和降噪問題,本文提出一種基于正交經(jīng)驗?zāi)B(tài)分解(Orthogonal empirical mode decomposition,OEMD)結(jié)合連續(xù)小波變換(Continuous wavelet transform,CWT)和主元分析(Principal component analysis,PCA)的振動信號特征提取法,。利用正交傳感器布局采集實際運行中柴油機活塞銷的振動信號,,采用 OEMD 將正交融合后的振動信號分解為多個經(jīng)驗?zāi)B(tài)函數(shù)(Intrinsic mode function,IMF),然后選取能量占比85%的前4個 IMF 分量進行CWT處理得到小波系數(shù)矩陣,,最后將該矩陣經(jīng)PCA運算后的最優(yōu)得分矩陣輸入K-means聚類算法中進行分類,。實際實驗數(shù)據(jù)驗證了所提方法的有效性,正交融合結(jié)果綜 合了整體趨勢和極值分布,,因此比單一傳感器更可靠,,從而避免了因傳感器安裝位置不合適而造成的干擾或特征缺失。通過與EMD-AR譜算法以及變分模態(tài)分解(Variational mode decomposition,,VMD)算法對比,,本文所提方法具有更強的降噪和特征提取能力,在 K-means算法中分類效果較為明顯,,為二分類器建模識別活塞銷磨損奠定了基礎(chǔ),。

    Abstract:

    As piston pin worn features are susceptible to environmental vibration disturbance during diesel engine operation, an effective vibration signal decomposition and noise reduction process is a promising way to enhance the disturbed signals, which is essential to build a reliable and precise binary classifier model to identify piston pin worn. To solve the problem of vibration signal decomposition and noise reduction, a feature extraction algorithm based on orthogonal empirical mode decomposition( OEMD )combined with continuous wavelet transform( CWT )and principal component analysis(PCA)was proposed. The orthogonal sensor layout was used to collect the vibration signal of the piston pin of the diesel engine in actual operation, and OEMD was used to decompose the orthogonal fusion vibration signal into multiple intrinsic mode functions(IMF), and then the first four IMF components with 85% energy were selected for CWT processing to obtain the wavelet coefficient matrix. Finally, the optimal score matrix after PCA operation was input into the K-means clustering algorithm for classification. The actual experimental data verified the effectiveness of the proposed method, and the orthogonal fusion results integrated the overall trend and extreme value distribution, so it was more reliable than a single sensor, thus avoiding the interference or feature loss caused by inappropriate sensor installation position. Compared with EMD combined with AR spectrum algorithm and VMD algorithm, the proposed method had stronger noise reduction and feature extraction capabilities, and the classification effect was more obvious in K-means algorithm, which laid a foundation for two-classifier modeling and identification of piston pin wear.

    參考文獻
    相似文獻
    引證文獻
引用本文

楊昊,翟玉彬,梁建輝,郭棟梁,劉先良,張瑞.基于正交經(jīng)驗?zāi)B(tài)分解的活塞銷磨損特征提取算法[J].農(nóng)業(yè)機械學(xué)報,2024,55(s1):412-419. YANG Hao, ZHAI Yubin, LIANG Jianhui, GUO Dongliang, LIU Xianliang, ZHANG Rui. Algorithm for Extracting Wear Characteristics of Piston Pins Based on Orthogonal Empirical Mode Decomposition[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(s1):412-419.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-08-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼