ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于激光SLAM的小麥點(diǎn)云采集系統(tǒng)與冠層高度提取方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

中國(guó)機(jī)械工業(yè)集團(tuán)有限公司青年科技基金項(xiàng)目(QNJJ-PY-2022-31)和國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021YFD2000105)


Point Cloud Acquisition and Canopy Geometric Features in Wheat Based on Laser SLAM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了能夠提高田間作物三維信息獲取的準(zhǔn)確性與效率,,以小麥為研究對(duì)象,,開發(fā)了一套田間多傳感器數(shù)據(jù)采集裝置,以自走式車輛為移動(dòng)載體,,利用三軸云臺(tái)作為增穩(wěn)載體,,構(gòu)建了一套激光雷達(dá)和IMU緊耦合點(diǎn)云采集系統(tǒng)。通過(guò)研究傳感器的成像特性和采集方式,,提出了一種基于激光SLAM的采集方法來(lái)構(gòu)建田間高精度點(diǎn)云地圖,,從而準(zhǔn)確獲取田間作物點(diǎn)云信息,能夠以1.5 m/s的速度完成地圖構(gòu)建,,不需要額外增加田間標(biāo)靶,,節(jié)約了后期點(diǎn)云匹配的資源。在點(diǎn)云地圖的基礎(chǔ)上,,使用直通濾波,、基于Octree的下采樣和統(tǒng)計(jì)濾波完成了前處理。提出一種基于垂直度和高度模型的地面區(qū)域精準(zhǔn)提取方法,,針對(duì)小麥生長(zhǎng)期間根部點(diǎn)云難以獲取,,使用點(diǎn)云PCA分析計(jì)算點(diǎn)云法向量進(jìn)行垂直度提取,,經(jīng)過(guò)二次結(jié)合高度模型成功分割出不規(guī)則的地面點(diǎn),再次利用地面穩(wěn)定擬合平面計(jì)算新的冠層高度模型,。通過(guò)統(tǒng)計(jì)分析,,與人工測(cè)量真值相比,基于SLAM的田間小麥三維地圖,,其建圖精度均方根誤差可以達(dá)到0.04 m;同時(shí)本文的冠層高度提取算法與人工測(cè)量真值相關(guān)系數(shù)達(dá)到了0.979,。研究可以為小麥田間三維性狀采集系統(tǒng)設(shè)計(jì)和性狀分析提供有力工具。

    Abstract:

    In order to be able to improve the accuracy and efficiency of the acquisition of three-dimensional information of field crops, taking wheat as the research object, this paper develops a set of field multi-sensor data acquisition device, using a self-propelled vehicle as the mobile carrier and a three-axis gimbal as the stabilisation carrier, and a tightly coupled point cloud acquisition system of LiDAR and IMU was constructed. By studying the imaging characteristics of the sensors and the acquisition method, a laser SLAM-based acquisition method was proposed to construct a high-precision point cloud map in the field, so as to accurately acquire the point cloud information of crops in the field, and be able to complete the construction of the map at a speed of 1.5 m/s, without the need to add additional field targets, which saved the resources for matching the point cloud at a later stage. On the basis of the point cloud map, pre-processing was completed by using straight through filtering, Octree-based downsampling and statistical filtering. An accurate extraction method of ground area based on verticality and height model was proposed. For the difficulty of obtaining the root point cloud during the growth period of wheat, the point cloud PCA analysis was used to calculate the normal vector of the point cloud for the calculation of verticality, and the secondary combination of the height model successfully segmented out the irregular ground points, and the new canopy height model was calculated by using the ground stabilisation fitting plane. Through statistical analysis, compared with the true value of manual measurement, the accuracy of SLAM-based three-dimensional map of wheat in the field, the root mean square error can reach 0.04 m;at the same time, the correlation coefficient between the canopy height extraction algorithm and the true value of manual measurement reached 0.979. The research can provide a powerful tool for the design of the three-dimensional trait collection system and trait analysis of wheat in the field.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

偉利國(guó),李廣瑞,董鑫,崔永志,安麒麟,袁玉龍.基于激光SLAM的小麥點(diǎn)云采集系統(tǒng)與冠層高度提取方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(s2):263-276. WEI Liguo, LI Guangrui, DONG Xin, CUI Yongzhi, AN Qilin, YUAN Yulong. Point Cloud Acquisition and Canopy Geometric Features in Wheat Based on Laser SLAM[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(s2):263-276.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-08-05
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼