ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于CNN-LSTM的蘋果樹種植區(qū)域提取
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金面上項目(32471993)


Apple Planting Area Extraction Based on Improved CNN-LSTM Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    蘋果樹種植區(qū)域提取有利于農(nóng)業(yè)資源高效管理。為解決蘋果種植區(qū)域提取中存在的分類精度不高,、時效性滯后等問題,,提出一種基于Sentinel-2和MODIS融合影像的卷積神經(jīng)網(wǎng)絡(luò)-長短期記憶網(wǎng)絡(luò) (CNN?LSTM) 時序分類模型。首先采用ESTARFM 時空融合算法構(gòu)建融合影像,,對不同衛(wèi)星影像在空間和時間監(jiān)測能力優(yōu)勢和缺陷進行互補,,得到高空間和高時間分辨率共存的影像數(shù)據(jù),。在特征選擇方面,通過隨機森林模型進行重要性分析并結(jié)合后向特征消除法從25個原始特征中選15個關(guān)鍵特征變量作為最優(yōu)特征組合,。分類模型方面,,卷積神經(jīng)網(wǎng)絡(luò)(Convolutional neural network, CNN)可以很好地在空間域、光譜域提取有效特征,。長短期記憶網(wǎng)絡(luò)(Long short-term memory, LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent neural network, RNN)的改進,,可以處理不等長的輸入序列。二者結(jié)合能夠提取“時空譜”有效特征,,實現(xiàn)更精準(zhǔn)的圖像分類和遙感數(shù)據(jù)分析,。以煙臺市牟平區(qū)觀水鎮(zhèn)為研究區(qū),利用時空融合彌補原始 Sentinel-2的影像缺失,,使用 CNN?LSTM模型進行蘋果樹種植區(qū)域提取,,并與常用的機器學(xué)習(xí)分類算法進行對比,進而確定最優(yōu)分類模型,。研究表明在蘋果種植區(qū)域提取方面 CNN?LSTM 模型總體精度為 97.98%,Kappa 系數(shù)為 0.958 6,,總體精度對比其他 4 種機器學(xué)習(xí)算法 CART,、SVM、RF,、GBDT分別高15.43,、5.25、4.00,、3.31個百分點,,與LSTM模型總體精度和Kappa系數(shù)相比分別提高2.11個百分點和0.0148。所提出的蘋果樹種植區(qū)域精準(zhǔn)遙感提取方法可為制定科學(xué)合理的農(nóng)業(yè)管理措施提供有力支持,。

    Abstract:

    The efficient management of agricultural resources can be significantly improved through the accurate extraction of apple cultivation areas. In order to solve the problems of poor classification accuracy and time lag in apple planting area extraction, a CNN?LSTM temporal classification model was proposed based on Sentinel-2 and MODIS fusion images. The ESTARFM spatio-temporal fusion algorithm was firstly used to construct the fusion image, which complemented the strengths and weaknesses of different satellite images in spatial and temporal monitoring capabilities, and obtained image data with high spatial and temporal resolution. The random forest model was utilized to select the most optimal feature combinations from the initial 25 features, narrowed down to 15 key variables using backward feature elimination. In terms of classification models, convolutional neural networks(CNN)can well extract effective features in the spatial and spectral domains. As an improvement of recurrent neural network, long short-term memory network (LSTM) can handle unequal input sequences. The combination of the two networks proposed can extract effective features in the spatial, temporal and spectral domains to achieve more accurate image classification and remote sensing data analysis. Taking Guanshui Town, Muping District, Yantai City as the study area, the spatio-temporal fusion algorithm was utilized to compensate for the lack of images from a single Sentinel-2, and the CNN?LSTM model was used for apple tree planting area extraction. The CNN?LSTM model achieved an overall accuracy of 97.98% and a Kappa coefficient of 0.9586, outperforming the other four machine learning algorithms by 15.43 percentage points,,5.25 percentage points,4.00 percentage points, and 3.31 percentage points,,respectively. The overall accuracy and Kappa coefficient of the CNN?LSTM model were improved by 2.11 percentage points and 0.0148, respectively, compared with that of the LSTM model. The precise remote sensing extraction method for apple tree planting areas proposed can provide strong support for the development of scientific and rational agricultural management.

    參考文獻
    相似文獻
    引證文獻
引用本文

王子航,常晗,張瑤,郭樹欣,張海洋.基于CNN-LSTM的蘋果樹種植區(qū)域提取[J].農(nóng)業(yè)機械學(xué)報,2024,55(s2):277-285. WANG Zihang, CHANG Han, ZHANG Yao, GUO Shuxin, ZHANG Haiyang. Apple Planting Area Extraction Based on Improved CNN-LSTM Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(s2):277-285.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-07-16
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-12-10
  • 出版日期:
文章二維碼