ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于電子病歷多模態(tài)數(shù)據(jù)的作物病害多元場(chǎng)景處方推薦方法研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(62376272)和全國(guó)農(nóng)業(yè)專業(yè)學(xué)位研究生教育指導(dǎo)委員會(huì)研究生教育研究重點(diǎn)課題(2021-NYZD-07)


Multi-scenario Prescription Recommendations for Crop Diseases Based on Multi-modal Data of Electronic Medical Records
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)作物品種及病害種類繁雜,、樣本數(shù)據(jù)嚴(yán)重不平衡,、處方類別多樣及數(shù)據(jù)多模態(tài)等特點(diǎn)和難點(diǎn),本文基于電子病歷多模態(tài)數(shù)據(jù)整合,,開展面向多樣化,、可拓展和多模態(tài)3種應(yīng)用場(chǎng)景需求的作物病害處方推薦方法研究。針對(duì)常見(jiàn)病害多樣化處方推薦應(yīng)用場(chǎng)景,,基于CdsBERT-RCNN和診斷推理構(gòu)建了作物病害多樣化處方推薦模型,,提升了面向32種常見(jiàn)病害的診斷準(zhǔn)確度及處方推薦的多樣化水平;針對(duì)未訓(xùn)練少見(jiàn)病害和新添處方應(yīng)用場(chǎng)景,,基于MC-SEM和語(yǔ)義檢索構(gòu)建了作物病害可拓展處方推薦模型,,提升了語(yǔ)義匹配準(zhǔn)確性和案例庫(kù)檢索速度,實(shí)現(xiàn)對(duì)未訓(xùn)練病害的處方推薦功能,;針對(duì)多種模態(tài)信息采集和輸入應(yīng)用場(chǎng)景,,基于BATNet多層特征融合構(gòu)建了多模態(tài)作物病害處方推薦模型,提升了多模態(tài)數(shù)據(jù)輸入的處方推薦性能,。實(shí)驗(yàn)結(jié)果表明,,CdsBERT-RCNN模型對(duì)32種常見(jiàn)病害的診斷準(zhǔn)確率達(dá)到85.65%,F(xiàn)1值達(dá)到85.63%;不同完整性輸入測(cè)試中,,僅輸入癥狀信息即可達(dá)到81.19%的準(zhǔn)確率,,而添加環(huán)境信息和作物信息分別使準(zhǔn)確率進(jìn)一步提高1.65、3.61個(gè)百分點(diǎn),;MC-SEM模型對(duì)電子病歷語(yǔ)義匹配任務(wù)達(dá)到皮爾森相關(guān)系數(shù)86.34%和斯皮爾曼相關(guān)系數(shù)77.67%,;封閉集和開放集上處方推薦準(zhǔn)確率分別達(dá)到88.20%和82.04%,驗(yàn)證了模型對(duì)未訓(xùn)練病害的推薦能力,;BATNet對(duì)于多模態(tài)輸入處方推薦任務(wù)的準(zhǔn)確率和F1值達(dá)到98.88%和98.83%,;應(yīng)用場(chǎng)景分析和測(cè)試驗(yàn)證了模型在不完整模態(tài)(純文本或純圖像)和不完整信息輸入(作物、環(huán)境,、癥狀)情況下泛化能力,。該研究為數(shù)字化賦能作物病害防治決策提供了新的思路。

    Abstract:

    Considering challenges such as diverse crop varieties, complex disease types, significant sample data imbalance, varied prescription categories, and multi-modal data, prescription recommendation methods tailored to diverse, extensible, and multi-modal application scenarios were explored by using multi-modal EMR data. To accommodate the varying prescription preferences of agricultural producers, a diversified crop disease prescription recommendation model based on CdsBERT-RCNN and diagnostic reasoning was developed, improving diagnostic accuracy and prescription diversity for 32 common diseases. For untrained rare diseases and newly added prescriptions, an extensible crop disease prescription recommendation model based on MC-SEM and semantic retrieval was developed, enhancing semantic matching accuracy and case library retrieval speed, and providing prescription recommendations for untrained diseases. For multimodal information collection and input, a multi-modal crop disease prescription recommendation model based on BATNet multi-layer feature fusion was developed, enhancing prescription recommendation performance for multimodal data inputs. Results demonstrated that CdsBERT-RCNN achieved an 85.65% diagnostic accuracy and an F1 score of 85.63% across the 32 common diseases. In tests with varying input completeness levels, the model achieved 81.19% accuracy with symptom information alone, and the inclusion of environmental and crop information improved accuracy by 1.65 percentage points and 3.61 percentage points, respectively. MC-SEM achieved a Pearson correlation coefficient of 86.34% and a Spearman correlation coefficient of 77.67% for EMR semantic matching tasks;and achieved accuracy of 88.20% and 82.04% in the closed-set and open-set prescription recommendation tests, respectively, demonstrating its capability to expand to untrained diseases. BATNet achieved an accuracy and F1 score of 98.88% and 98.83%, respectively, for multi-modal input prescription recommendation tasks. Application scenario analysis and testing validated the model’s generalization capability for incomplete modalities (pure text or pure image) and incomplete information input (crop, environment, symptoms). The research result would provide an idea for digitally enabled crop disease control decision-making.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張領(lǐng)先,丁俊琦,陳菲菲,李宜濱,張一丁.基于電子病歷多模態(tài)數(shù)據(jù)的作物病害多元場(chǎng)景處方推薦方法研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(1):25-36,,46. ZHANG Lingxian, DING Junqi, CHEN Feifei, LI Yibin, ZHANG Yiding. Multi-scenario Prescription Recommendations for Crop Diseases Based on Multi-modal Data of Electronic Medical Records[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(1):25-36,,46.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-07-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-01-10
  • 出版日期:
文章二維碼