ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于彩色與熱紅外圖像信息融合的肉雞死雞識別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

科技創(chuàng)新2030—“新一代人工智能”重大項(xiàng)目(2021ZD0113804-3)


Detection of Dead Broilers Based on Fusion of Color and Thermal Infrared Image Information
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了提高規(guī)?;怆u養(yǎng)殖場中肉雞死雞識別的精度,,基于彩色圖像和熱紅外圖像,分別提出了基于兩階段與單階段的肉雞死雞檢測方法,。在兩階段方法中,,首先使用YOLO v11-seg網(wǎng)絡(luò)對彩色圖像中肉雞進(jìn)行分割,獲取肉雞掩膜坐標(biāo),;然后提取單只肉雞熱紅外圖像,,使用YOLO v8-cls分類網(wǎng)絡(luò)對單只肉雞熱紅外圖像進(jìn)行分類。在單階段方法中,,基于彩色圖像和配準(zhǔn)熱紅外圖像分別構(gòu)建了G通道替換融合圖像,、加權(quán)融合圖像、小波變換融合圖像以及頻域變換融合圖像,,使用多源融合圖像數(shù)據(jù)集基于YOLO v11s目標(biāo)檢測網(wǎng)絡(luò)構(gòu)建了肉雞死雞檢測模型,。結(jié)果表明,兩階段肉雞死雞檢測方法中,,肉雞實(shí)例分割平均精確率為94.2%,,單只肉雞熱紅外圖像分類準(zhǔn)確率為99.4%。單階段肉雞死雞檢測方法中,,基于小波變換融合圖像構(gòu)建的肉雞死雞檢測模型獲得了最高的檢測精度,,檢測平均精確率為93.0%。兩種方法相比,,單階段檢測方法在公共測試集上精確率更高,,為92.3%,,推理速度更快(6.1 ms/f),單模型部署更加簡單,。對肉雞熱紅外圖像溫度分布分析表明,,低周齡肉雞與高周齡肉雞的體表溫度分布具有明顯差異。提出的肉雞死雞檢測方法,,能夠在高密度養(yǎng)殖下的惡劣成像環(huán)境中對肉雞死雞實(shí)現(xiàn)準(zhǔn)確識別,,為其他畜禽死亡檢測提供了技術(shù)參考。

    Abstract:

    In order to improve the accuracy of dead broiler detection in large-scale broiler farms, based on color images and thermal infrared images, two-stage and one-stage dead broiler detection methods for broilers were proposed, respectively. In the two-stage method, the YOLO v11-seg network was firstly used to segment broilers in color images to obtain broiler mask coordinates; then individual broiler thermal infrared images were extracted and classified by using the YOLO v8-cls classification network. In the one-stage method, G-channel replacement fusion images, weighted fusion images, wavelet transform fusion images, and frequency domain transform fusion images were constructed based on color images and registered thermal infrared images. Multi-source fusion image datasets were used to build a dead broiler detection model based on the YOLO v11s object detection network. The results showed that in the two-stage dead broiler detection method, the mAP of broiler instance segmentation was 94.2%, and the classification accuracy of individual broiler thermal infrared images was 99.4%. In the one-stage dead broiler detection method, the model built based on wavelet transform fusion images achieved the highest detection accuracy, with mAP of 93.0%. Compared with the two-stage method, the one-stage detection method had a higher precision rate of 92.3% on the public test set, faster inference speed (6.1 ms/f), and easier to be deployed. Analysis of the temperature distribution of individual broiler thermal infrared images indicated that there were significant differences in body surface temperature distribution between low-age and high-age broilers. The dead broiler detection method proposed can accurately identify dead broilers in the harsh imaging environment under high-density breeding, and it can provide a technical reference for the death detection of other livestock and poultry.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

郝宏運(yùn),姜偉,羅升,孫憲法,王糧局,王紅英.基于彩色與熱紅外圖像信息融合的肉雞死雞識別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(1):47-55,,64. HAO Hongyun, JIANG Wei, LUO Sheng, SUN Xianfa, WANG Liangju, WANG Hongying. Detection of Dead Broilers Based on Fusion of Color and Thermal Infrared Image Information[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(1):47-55,,64.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-10-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-01-10
  • 出版日期:
文章二維碼