ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于視覺觸覺雙重遷移學習的番茄成熟度檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

山東省重大科技創(chuàng)新工程項目(2019JZZY010444)和齊魯工業(yè)大學(山東省科學院)科教產融合培優(yōu)基金項目(2023PY006)


Tomato Maturity Detection Method Based on Visual and Haptic Double Transfer Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對當前自動化采摘過程中僅依賴視覺技術無法準確識別番茄成熟度的問題,,提出了一種基于視覺觸覺雙重遷移學習的番茄成熟度檢測方法,。該方法首先采用視覺觸覺雙重遷移學習融合算法作為特征提取融合模塊,解決無法有效提取番茄特征信息的問題,。其次,,將軟參數(shù)共享-多標簽分類方法作為分類模塊,通過增加不同分類任務之間的關聯(lián)性,,避免出現(xiàn)過擬合的現(xiàn)象,。本文主要針對成熟后為紅、黃果等單一顏色的番茄品種,,并在新開發(fā)的視覺觸覺數(shù)據(jù)集進行實驗研究,。實驗表明,,軟參數(shù)共享-多標簽檢測模型參數(shù)量為1.882×107,成熟度AUC分值達到0.977 3,,對比不確定性加權損失,、自適應硬參數(shù)共享、十字繡網(wǎng)絡和軟參數(shù)共享等檢測模型,,參數(shù)量分別下降3.08×106,、6.16×106、3.08×106和3.08×106,,成熟度AUC分值分別提高0.017 5,、0.017 9、0.026 7和0.008 9,。這表明該方法在一定程度上提高了自動化采摘過程中對番茄成熟度的檢測能力,,為番茄成熟度檢測問題提供了一種有效的解決方法。

    Abstract:

    Aiming at the problem that tomato ripeness cannot be accurately recognized by relying only on visual technology in the current automated picking process, a tomato ripeness detection method based on visual-haptic dual migration learning was proposed. The method firstly adopted the visual and haptic double transfer learning fusion algorithm as the feature extraction fusion module to solve the problem of not effectively extracting tomato feature information. Secondly, the soft parameter sharing-multilabel classification method was used as the classification module to avoid overfitting by increasing the correlation between different classification tasks. Focusing on tomato varieties that ripened to a single color, such as red and yellow fruits, experimental studies on a newly developed visual and tactile dataset were conducted. The experiments showed that the parameter count of the soft parameter sharing-multilabel detection model was 1.882×107, and the ripeness AUC score reached 0.977 3. Compared with the detection models of uncertainty weighted loss, adaptive hard parameter sharing, cross-stitch network, and soft parameter sharing, the parameter counts dropped by 3.08×106, 6.16×106, 3.08×106, and 3.08×106, and the ripeness AUC scores increased by 0.017 5, 0.017 9, 0.026 7 and 0.008 9, respectively. This indicated that the method improved the detection of tomato ripeness during automated picking to a certain extent and provided an effective solution to the tomato ripeness detection problem.

    參考文獻
    相似文獻
    引證文獻
引用本文

張鵬,杜東峰,李爽,單東日,陳振學.基于視覺觸覺雙重遷移學習的番茄成熟度檢測方法[J].農業(yè)機械學報,2025,56(1):74-83. ZHANG Peng, DU Dongfeng, LI Shuang, SHAN Dongri, CHEN Zhenxue. Tomato Maturity Detection Method Based on Visual and Haptic Double Transfer Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(1):74-83.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-03-25
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-01-10
  • 出版日期:
文章二維碼