ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)自適應(yīng)卡爾曼濾波算法的溫室UWB定位技術(shù)
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD2002004)


UWB Greenhouse Positioning Technology Based on Improved Adaptive Kalman Filter Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對農(nóng)業(yè)溫室環(huán)境中,,由于超寬帶(Ultra -wideband, UWB)定位技術(shù)干擾免疫差和統(tǒng)計(jì)特性未知而面臨定位精度不足的問題,本文提出一種基于改進(jìn)自適應(yīng)卡爾曼濾波(Improved adaptive Kalman filter,,IAKF)算法的UWB定位技術(shù),。首先,引入異常檢測機(jī)制,,以識(shí)別濾波過程中的發(fā)散現(xiàn)象,;進(jìn)而,通過實(shí)時(shí)更新量測噪聲協(xié)方差矩陣,,抑制濾波發(fā)散,,在噪聲強(qiáng)波動(dòng)情況下增強(qiáng)算法適應(yīng)性;同時(shí),,開展3種不同環(huán)境噪聲下仿真定位試驗(yàn),,對比分析UWB、IAKF,、自適應(yīng)卡爾曼濾波(Adaptive Kalman filter,,AKF)及卡爾曼濾波(Kalman filter,KF)算法性能,。仿真結(jié)果表明,,IAKF算法展現(xiàn)出更強(qiáng)的適應(yīng)性及魯棒性。以自主開發(fā)農(nóng)用履帶車輛為定位載體,,于農(nóng)業(yè)溫室環(huán)境中開展UWB定位試驗(yàn),。試驗(yàn)結(jié)果表明,溫室環(huán)境中,,履帶車輛在視距(Line of sight,,LOS)和非視距(Non line of sight,NLOS)場景下,,較AKF和KF算法,,IAKF算法定位精度分別提高22.2%、13.0%和20.0%、15.4%,。

    Abstract:

    Aiming to address the issue of insufficient positioning accuracy of ultra-wideband (UWB) positioning technology in agricultural greenhouse environments, caused by poor interference immunity and unknown statistical characteristics, a UWB positioning technology was proposed-based on an improved adaptive Kalman filter (IAKF) algorithm. Firstly, an anomaly detection mechanism was introduced to identify divergence phenomena during the filtering process. Subsequently, the measurement noise covariance matrix was updated in real-time to suppress filter divergence and enhance the algorithm’s adaptability in the presence of strong noise fluctuations. Simulation positioning experiments under three different noise environments were conducted to compare and analyze the performance of UWB, IAKF, adaptive Kalman filter (AKF), and Kalman filter (KF) algorithms. The simulation results showed that the IAKF algorithm exhibited stronger adaptability and robustness. Finally, using a self-developed agricultural tracked vehicle as the positioning carrier, UWB positioning experiments were conducted in the greenhouse environment. The experimental results indicated that in the greenhouse environment, the positioning accuracy of the tracked vehicle using the IAKF algorithm was improved by 22.2% and 13.0% in-line of sight (LOS) and 20.0% and 15.4% in non-line of sight (NLOS) scenarios compared with that of the AKF and KF algorithms, respectively.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張兆國,朱時(shí)亮,王法安,解開婷,張炅昊,李漫漫.基于改進(jìn)自適應(yīng)卡爾曼濾波算法的溫室UWB定位技術(shù)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(3):494-502,,522. ZHANG Zhaoguo, ZHU Shiliang, WANG Faan, XIE Kaiting, ZHANG Jionghao, LI Manman. UWB Greenhouse Positioning Technology Based on Improved Adaptive Kalman Filter Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(3):494-502,522.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-09-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-03-10
  • 出版日期:
文章二維碼