ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

旱田智能化機(jī)械除草技術(shù)與裝備研究進(jìn)展
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2023YFD1500401)


Research Progress on Intelligent Mechanical Weeding Technology and Equipment in Dry Field
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    當(dāng)前傳統(tǒng)化學(xué)和物理除草方法面臨環(huán)境污染和效率低等問(wèn)題,,因此智能化機(jī)械除草技術(shù)成為一種可行的替代方案,。本文系統(tǒng)闡述了旱田智能機(jī)械除草機(jī)工作原理與關(guān)鍵技術(shù),結(jié)合國(guó)內(nèi)外研究現(xiàn)狀與應(yīng)用案例,,重點(diǎn)探討了作物行檢測(cè),、避苗控制以及多傳感器融合等核心環(huán)節(jié)。智能除草機(jī)基于高精度圖像識(shí)別與深度學(xué)習(xí)算法,,實(shí)現(xiàn)雜草精準(zhǔn)定位與識(shí)別,,并利用機(jī)械臂或其他執(zhí)行機(jī)構(gòu)完成高效除草作業(yè),不僅有效降低了對(duì)化學(xué)除草劑的依賴(lài),,且可顯著提高作物產(chǎn)量,,兼具突出的環(huán)境與經(jīng)濟(jì)效益。然而,,田間環(huán)境的復(fù)雜性和成本高昂等限制了其廣泛應(yīng)用,。進(jìn)一步探討了作物行檢測(cè)、避苗控制以及多傳感器融合等旱田智能機(jī)械除草系統(tǒng)的關(guān)鍵技術(shù),,強(qiáng)調(diào)了提升系統(tǒng)實(shí)時(shí)性和除草精準(zhǔn)度的必要性,,并提出未來(lái)發(fā)展方向:多傳感器融合,、模塊化設(shè)計(jì)及適應(yīng)多樣化作物環(huán)境個(gè)性化解決方案,以推動(dòng)農(nóng)業(yè)可持續(xù)發(fā)展,。

    Abstract:

    With increasing global environmental and economic pressures on agriculture, traditional chemical and physical weed control methods face significant challenges, such as environmental pollution and inefficiency in operations. Intelligent mechanical weeding technology has emerged as a sustainable alternative, effectively addressing these challenges. This review examined the research progress on intelligent mechanical weeding machines designed specifically for dryland environments, focusing on their working principles, key technologies, practical applications, and development status both domestically and internationally. Intelligent weeding machines increasingly utilized high-precision image recognition and advanced deep learning algorithms to achieve accurate weed identification and precise positioning. These systems used mechanical arms or other units to perform efficient and targeted weeding operations, enhancing crop yield and reducing reliance on chemical herbicides while providing substantial environmental and economic benefits. However, challenges such as variable field conditions, high equipment costs, and technical limitations hindered widespread adoption. This review also explored essential technologies in dryland intelligent mechanical weeding, including crop row detection, seedling-avoidance control mechanisms, and multi-sensor integration, emphasizing the importance of improving real-time processing and precision in weeding operations. Future directions included multi-sensor fusion, modular design, and adaptations for various crop environments to enhance the practicality and adoption of intelligent weeding technologies in agriculture.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張馨悅,王慶杰,王超,徐征鑫,盧彩云,何進(jìn),李洪文.旱田智能化機(jī)械除草技術(shù)與裝備研究進(jìn)展[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(4):22-41,,71. ZHANG Xinyue, WANG Qingjie, WANG Chao, XU Zhengxin, LU Caiyun, HE Jin, LI Hongwen. Research Progress on Intelligent Mechanical Weeding Technology and Equipment in Dry Field[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(4):22-41,71.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-12-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-04-10
  • 出版日期:
文章二維碼