ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于電容法和深度補(bǔ)償?shù)臋C(jī)載式玉米播種種溝土壤墑情在線檢測(cè)系統(tǒng)設(shè)計(jì)與試驗(yàn)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2023YFD1500405),、山東省重點(diǎn)研發(fā)計(jì)劃(重大科技創(chuàng)新工程)項(xiàng)目(2022CXGC010608)和山東省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022SFGC0202)


Design and Experiment of Airborne On-line Soil Moisture Detection System Based on Capacitance Method and Depth Compensation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)現(xiàn)有玉米播種裝備缺乏土壤墑情在線檢測(cè)系統(tǒng),且已有的土壤墑情在線檢測(cè)系統(tǒng)檢測(cè)精度不高,、環(huán)境適應(yīng)差的問(wèn)題,,本文提出了一種基于電容法和深度補(bǔ)償?shù)耐寥缐勄闄z測(cè)方法,開(kāi)發(fā)了一套機(jī)載式玉米播種種溝墑情在線檢測(cè)系統(tǒng),。開(kāi)展了電容器結(jié)構(gòu)優(yōu)化參數(shù)仿真試驗(yàn),,確定了最佳電容極板參數(shù)為:極板間距75.8mm、極板厚度0.7mm,、極板相對(duì)面積5073mm2,,其長(zhǎng)度為100mm,寬度為50.73mm,;系統(tǒng)硬件部分主要包括FDC2214型電容傳感器,、F4046型壓力傳感器和STM32F103型單片機(jī),電容傳感器用于獲取待測(cè)土壤電容,,壓力傳感器用于獲取待測(cè)土壤壓力,,間接反推待測(cè)區(qū)域土壤深度;系統(tǒng)軟件則利用Matlab平臺(tái)進(jìn)行開(kāi)發(fā),,用于對(duì)土壤電容信號(hào)和壓力信號(hào)的實(shí)時(shí)采集,、計(jì)算、顯示與存儲(chǔ),?;谠撓到y(tǒng)探究了土壤墑情檢測(cè)模型影響因素,構(gòu)建了基于BP神經(jīng)網(wǎng)絡(luò)的土壤墑情檢測(cè)模型,,建模試驗(yàn)結(jié)果表明,,當(dāng)土壤墑情為7.23%~21.14%時(shí),模型預(yù)測(cè)性能指標(biāo)R2,、RMSE和RPD分別為0.927,、0.008和3.70,預(yù)測(cè)效果較好,。最終,,將構(gòu)建的模型集成到土壤墑情在線檢測(cè)系統(tǒng),,開(kāi)展了臺(tái)架與田間驗(yàn)證試驗(yàn)。臺(tái)架試驗(yàn)結(jié)果表明,,土壤墑情實(shí)際值與檢測(cè)值的擬合決定系數(shù)R2均為0.852~0.927,,土壤墑情預(yù)測(cè)結(jié)果絕對(duì)誤差為-2.89%~2.57%,絕對(duì)誤差平均值為1.01%,;田間試驗(yàn)結(jié)果表明,,土壤墑情檢測(cè)值與實(shí)際值擬合曲線決定系數(shù)R2為0.842,土壤墑情檢測(cè)絕對(duì)誤差為-0.96%~0.45%,,平均絕對(duì)誤差為0.39%,。本研究所研制的檢測(cè)系統(tǒng)性能滿足玉米播種機(jī)田間作業(yè)時(shí)土壤墑情檢測(cè)需求。

    Abstract:

    Aiming at the lack of online soil moisture detection system for existing corn sowing equipment and the problems of low detection accuracy and poor environmental adaptation of the existing online soil moisture detection system, a method of soil moisture measurement was presented based on capacitance method and depth compensation, and a set of airborne corn sowing soil moisture online detection system was developed. In terms of electrode plate optimization, the system conducted simulation experiments on capacitor structure optimization parameters with electrode plate spacing, electrode plate thickness, and relative area as experimental factors. The optimal capacitor electrode plate parameters were determined to be as follows: electrode plate spacing of 75.8mm, electrode plate thickness of 0.7mm, electrode plate relative area of 5.073mm2, length of 100mm, width of 50.73mm. The hardware part of the system mainly included FDC2214 capacitive sensor, F4046 pressure sensor, and STM32F103 microcontroller. The capacitive sensor was used to obtain the capacitance value of the soil to be tested, and the pressure sensor was used to obtain the pressure value of the soil to be tested, indirectly inferring the soil depth in the tested area. The system software was developed by using Matlab platform for real-time acquisition, calculation, display, and storage of soil capacitance signals and pressure signals. Based on this system, the influencing factors of soil moisture detection models were explored, and a soil moisture detection model based on BP neural network was constructed. The modeling experiment results showed that when the soil moisture was in the range of 7.23% to 21.14%, the model’s predictive performance indicators R2, RMSE, and RPD were 0.927, 0.008, and 3.70, respectively, with good predictive performance. Finally, the constructed model was integrated into the online soil moisture detection system and bench and field validation experiments were conducted. The results of bench test showed that the fitting coefficient R2 of soil moisture content was 0.852~0.927. The absolute error range of soil moisture prediction results was from -2.89% to 2.57%, and the average absolute error was 1.01%. The field test results showed that the coefficient of determination R2 of the fitting curve between the soil moisture monitoring value and the actual value was 0.842, and the absolute error range of soil moisture monitoring was from -0.96% to 0.45%, with an average absolute error of 0.39%. This indicated that the performance of the detection system developed met the needs of soil moisture monitoring during field operations of corn seeders.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張安琪,高寧,溫昌凱,楊興華,梅鶴波,顏丙新,王培,孟志軍.基于電容法和深度補(bǔ)償?shù)臋C(jī)載式玉米播種種溝土壤墑情在線檢測(cè)系統(tǒng)設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(4):87-97. ZHANG Anqi, GAO Ning, WEN Changkai, YANG Xinghua, MEI Hebo, YAN Bingxin, WANG Pei, MENG Zhijun. Design and Experiment of Airborne On-line Soil Moisture Detection System Based on Capacitance Method and Depth Compensation[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(4):87-97.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-12-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-04-10
  • 出版日期:
文章二維碼