ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于高貼合旋轉(zhuǎn)框的復(fù)雜環(huán)境玉米株心定位方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2023YFD1500404)


Corn Plant Core Localization Method Based on High-fitting Rotated Bounding Boxes for Complex Environments
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為解決玉米株心定位困難及定位精度低的問(wèn)題,針對(duì)復(fù)雜自然環(huán)境玉米葉冠數(shù)據(jù),,本文開(kāi)發(fā)了一種基于高貼合旋轉(zhuǎn)框的玉米株心定位方法,,并提出了一種能有效減少邊緣精度損失的標(biāo)注策略。該定位方法首先通過(guò)使用高精度標(biāo)注策略和構(gòu)建具有自適性的輕量化漸進(jìn)特征金字塔網(wǎng)絡(luò)LC-AFPN,,得到LCA-YOLO v7OBB玉米葉冠目標(biāo)檢測(cè)算法,,然后利用色彩空間濾波算法分割葉冠區(qū)域,并使用間隙填充算法提升圖像質(zhì)量,,最后利用圖像矩原理準(zhǔn)確計(jì)算株心坐標(biāo),。實(shí)驗(yàn)結(jié)果表明,模型抗干擾能力強(qiáng),,株心定位準(zhǔn)確度高。LCA-YOLO v7OBB模型平均檢測(cè)精度可達(dá)85.19%,,精確率和召回率達(dá)到91.83%和83.04%,。與Rotated-FasterRCNN等12種旋轉(zhuǎn)目標(biāo)檢測(cè)模型相比,LCA-YOLO v7OBB在準(zhǔn)確性和召回率等綜合性能方面表現(xiàn)最佳,。模型泛化能力強(qiáng),,在自建黃瓜、茄子2種數(shù)據(jù)集上進(jìn)行驗(yàn)證,,其平均精度,、精確率,、召回率和F1值均有明顯提升。本文方法能夠?yàn)榫珳?zhǔn)施肥,、農(nóng)機(jī)視覺(jué)導(dǎo)航等提供理論基礎(chǔ)和技術(shù)支持,。

    Abstract:

    A corn plant core localization algorithm was developed based on high-fit oriented bounding boxes for complex natural environment corn canopy data, and a labeling strategy was proposed that can effectively reduce the lack of edge precision. To address the issues of insufficient labeling accuracy and weak multi-scale feature extraction in traditional object detection networks, a novel high-precision labeling strategy for YOLO v7OBB was proposed and an innovative learning convergent asymptotic feature pyramid network (LC-AFPN) was developed. Additionally, a color space filtering algorithm was used for canopy segmentation, and a gap-filling algorithm improved image quality. Spatial moments were utilized to accurately calculate the coordinates of the plant core, leading to the learning convergent asymptotic YOLO v7OBB network (LCA-YOLO v7OBB) for corn canopy targets detection. Validation on a complex corn field dataset revealed that LCA-YOLO v7OBB offered strong anti-interference capability and high plant core localization accuracy, with an average accuracy of 85.19% and precision and recall rates of 91.83% and 83.04%, respectively. Compared with 12 other rotating object detection networks, this model demonstrated the best overall performance. Moreover, validation on custom cucumber and eggplant datasets further confirmed its robust generalization ability. This model provided a theoretical basis and technical support for applications such as precision fertilization and agricultural machinery visual navigation.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

徐艷蕾,郭麗麗,黃東巖,周陽(yáng),李陳孝.基于高貼合旋轉(zhuǎn)框的復(fù)雜環(huán)境玉米株心定位方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(4):129-138. XU Yanlei, GUO Lili, HUANG Dongyan, ZHOU Yang, LI Chenxiao. Corn Plant Core Localization Method Based on High-fitting Rotated Bounding Boxes for Complex Environments[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(4):129-138.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-10-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-04-10
  • 出版日期:
文章二維碼