ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于高光譜成像的加料煙葉丙二醇含量無損檢測與可視化分析
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

中國煙草總公司重大科技項(xiàng)目(110202401040(YJ-03)),、中國煙草實(shí)業(yè)發(fā)展中心科技計(jì)劃項(xiàng)目(ZYSYQ-2023-09)和甘肅煙草工業(yè)有限責(zé)任公司科技項(xiàng)目(KJXM-2023-09)


Non-destructive Detection and Visualization Analysis of Propylene Glycol Content in Processed Tobacco Leaves Using Hyperspectral Imaging
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    煙葉加料作為煙草加工制絲工藝中的關(guān)鍵環(huán)節(jié),對改善煙葉的物理和化學(xué)特性,,以及提升產(chǎn)品品質(zhì)具有重要意義,,但現(xiàn)有加料精度檢測主要集中在用量監(jiān)控,缺乏加料后效果的評估,。本文針對加料后煙葉的微量添加物含量的無損檢測及可視化分析,,構(gòu)建了基于高光譜成像和卷積神經(jīng)網(wǎng)絡(luò)(CNN)方法的煙葉微量添加物含量檢測模型、光譜預(yù)處理方法與特征波長選擇技術(shù)優(yōu)化開展建模探究,。通過高光譜成像系統(tǒng)采集添加不同比例丙二醇煙葉樣本的光譜數(shù)據(jù),,分別采用標(biāo)準(zhǔn)正態(tài)變換(SNV)、多元散射校正(MSC),、Savitzky-Golay濾波平滑3種數(shù)據(jù)預(yù)處理方法對比,,并通過競爭性自適應(yīng)重加權(quán)算法(CARS)、主成分分析(PCA)篩選特征波長以及光譜曲線波谷點(diǎn)對應(yīng)波長,,確定了1146,、1614、2511,、2517,、2522,、1941nm 6個共同的一致關(guān)鍵波長。分別構(gòu)建CNN,、隨機(jī)森林(RF),、偏最小二乘回歸(PLSR)模型進(jìn)行加料煙葉微量添加物丙二醇含量的檢測。結(jié)果表明,,SNV-PCA-CNN模型在訓(xùn)練集和測試集中的檢測效果最佳,取前4個主成分?jǐn)?shù)量累計(jì)貢獻(xiàn)率可達(dá)99%,,訓(xùn)練集決定系數(shù)R2C為0.9880,、均方根誤差RMSE為0.0020kg/kg,測試集決定系數(shù)R2P為0.9896,、均方根誤差RMSE為0.0021kg/kg,,具備優(yōu)良的擬合與泛化能力,深度學(xué)習(xí)CNN模型在測試集上的表現(xiàn)顯著優(yōu)于機(jī)器學(xué)習(xí)RF和PLSR方法,。因此基于高光譜成像的CNN模型能夠?qū)恿蠠熑~微量添加物丙二醇含量及可視化進(jìn)行準(zhǔn)確檢測及評估,。

    Abstract:

    The application of trace amounts of sugar solution additives to tobacco leaves is a critical step in the tobacco processing and cutting technology, significantly impacting the physical and chemical properties of the leaves and enhancing cigarette quality. However, current precision detection methods for sugar solution additives primarily focus on dosage monitoring, lacking an evaluation of the post-application effects.The hyperspectral imaging technology and deep learning methods were utilized to perform non-destructive detection and visualization analysis of trace additives in tobacco leaves after sugar solution application. A prediction system based on a deep learning convolutional neural network (CNN) model was developed, incorporating multiple spectral preprocessing methods and feature band selection techniques to optimize model performance and improve the detection accuracy of additive content in tobacco leaves. Spectral data from tobacco samples with varying proportions of propylene glycol were collected by using a hyperspectral imaging system. The data were preprocessed by using three methods: standard normal variate (SNV), multiplicative scatter correction (MSC), and Savitzky-Golay filtering, which were employed for data preprocessing respectively. Feature bands were selected through competitive adaptive reweighted sampling (CARS), principal component analysis (PCA), and identification of spectral trough points, resulting in six common consistent key wavelengths at 1146nm, 1614nm,2511nm, 2517nm, 2522nm, and 1941nm. CNN, random forest (RF), and partial least squares regression (PLSR) models were constructed to predict the additive content, with hyperspectral data visualization conducted by using the CNN method. The results showed that the SNV-PCA-CNN model achieved the best predictive performance for both the training set (R2C was 0.9880, RMSE was 0.0020kg/kg) and the test set (R2P was 0.9896, RMSE was 0.0021kg/kg), and the cumulative contribution rate was close to 99% by taking the first-four principal components, demonstrating excellent fitting and generalization capabilities. The predictive ability of the deep learning CNN model significantly outperformed the performance of traditional machine learning methods RF and PLSR, reflecting the CNN model sufficient generalization capabilities for hyperspectral data of tobacco samples with sugar solution additives. The combination of hyperspectral imaging and the CNN model showed great potential for detecting trace additives in tobacco leaves, providing technical support for non-destructive testing and precise control in the tobacco processing industry.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊忠泮,靳伍銀,吳戀戀,張新新,堵勁松.基于高光譜成像的加料煙葉丙二醇含量無損檢測與可視化分析[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(4):335-343. YANG Zhongpan, JIN Wuyin, WU Lianlian, ZHANG Xinxin, DU Jinsong. Non-destructive Detection and Visualization Analysis of Propylene Glycol Content in Processed Tobacco Leaves Using Hyperspectral Imaging[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(4):335-343.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-10-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-04-10
  • 出版日期:
文章二維碼