ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

面向邊緣計算的水稻病害檢測方法與裝置研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家水稻產(chǎn)業(yè)技術(shù)體系綜合試驗站項目(CARS-01-95)和湖州市重點研發(fā)計劃項目(2022ZD2048)


Development of Rice Disease Detection Methods and Devices for Edge Computing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對自然環(huán)境下水稻病害檢測準(zhǔn)確性與效率不高等問題,本文提出一種改進YOLO v5s的輕量化檢測模型YOLO-RD,,并將其部署至邊緣計算設(shè)備,,設(shè)計便攜式檢測裝置,實現(xiàn)水稻病害快速檢測,。通過引入GhostNet網(wǎng)絡(luò)減少計算量和參數(shù)量,。結(jié)合輕量級注意力機制Shuffle Attention和動態(tài)檢測頭DyHead(Dynamic head),增強模型對水稻病害圖像的特征提取和自適應(yīng)檢測能力,。使用Shape-IoU替代CIoU損失函數(shù),,提升自然環(huán)境下檢測精度。試驗結(jié)果表明,,YOLO-RD模型在平均精度均值(mean Average Precision, mAP)達到94.2%的同時,,大幅降低計算復(fù)雜度和參數(shù)量,具有良好的輕量化效果,與基準(zhǔn)模型相比計算量,、參數(shù)量和內(nèi)存占用量分別減少44.4%,、43.2%和41.3%。與YOLO 11n,、YOLO v8n和YOLO v5n等目標(biāo)檢測模型對比,,本模型檢測效果最佳。將模型在樹莓派4B邊緣計算設(shè)備上部署,,單幅圖像檢測時間為1.97s,,滿足實際應(yīng)用需求,可為水稻病害智能化檢測提供高效可行的解決方案,。

    Abstract:

    Aiming to address the challenges of accuracy and efficiency in rice disease detection under natural conditions, a lightweight detection model, YOLO-RD, was presented based on an improved YOLO v5s framework. The model was optimized and successfully deployed on edge computing devices, enabling the creation of a portable device for fast rice disease detection. In the proposed model, GhostNet was integrated to reduce computational complexity and the number of parameters. Finally, the lightweight Shuffle Attention mechanism and the dynamic detection head DyHead were employed to enhance feature extraction and adaptive detection capabilities, particularly for complex disease features. Furthermore, the standard CIoU loss function was replaced by Shape-IoU to improve detection performance in challenging environments by focusing on shapebased regression. Experimental results demonstrated that YOLO-RD achieved a mean Average Precision (mAP) of 94.2%, while significantly reducing computational complexity and parameter size. Specifically, YOLO-RD reduced computation, parameters, and weight by 44.4%, 43.2%, and 41.3%, respectively, compared with the baseline model. In addition, the model outperformed detection models such as YOLO 11n, YOLO v8n, YOLO v5n, and others in terms of accuracy. When deployed on a raspberry Pi 4B edge computing device, YOLO-RD achieved an inference time of 1.97 s per image, meeting the requirements for real-time application. These findings suggested that YOLO-RD offered an efficient and robust solution for intelligent rice disease detection in practical agricultural scenarios.

    參考文獻
    相似文獻
    引證文獻
引用本文

周成,陳章彬,杜雅剛,房欣,姚立立,周曹航.面向邊緣計算的水稻病害檢測方法與裝置研究[J].農(nóng)業(yè)機械學(xué)報,2025,56(4):353-362. ZHOU Cheng, CHEN Zhangbin, DU Yagang, FANG Xin, YAO Lili, ZHOU Caohang. Development of Rice Disease Detection Methods and Devices for Edge Computing[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(4):353-362.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-10-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-04-10
  • 出版日期:
文章二維碼