ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于深度增強(qiáng)與特征抗噪的夜間串番茄成熟度識(shí)別方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

湖南省智能農(nóng)機(jī)裝備創(chuàng)新研發(fā)項(xiàng)目(202404710710436)


Tomato Cluster Ripeness Recognition at Night Based on Depth Enhancement and Feature Noise Reduction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    機(jī)器人自動(dòng)化采收是溫室串番茄收獲作業(yè)的有效解決方案,其中串番茄成熟度是機(jī)器人采摘決策的重要依據(jù),。本文利用Deep White-Balance與Zero-DCE深度神經(jīng)網(wǎng)絡(luò)分別實(shí)現(xiàn)串番茄圖像偏色修正和陰影細(xì)節(jié)增強(qiáng),,改善補(bǔ)光環(huán)境與夜間環(huán)境下圖像偏色與局部弱光等問(wèn)題。同時(shí)引入深度殘差收縮網(wǎng)絡(luò),,在YOLO v5s中構(gòu)建RSBottleneck-CW模塊對(duì)特征圖進(jìn)行軟閾值化處理,,抑制圖像中的噪聲干擾。實(shí)驗(yàn)結(jié)果表明,,在夜間環(huán)境下,,圖像經(jīng)Zero-DCE算法增強(qiáng)處理后,檢測(cè)模型召回率達(dá)到0.924,,捕獲到了更多的番茄果實(shí)與果串目標(biāo),。在補(bǔ)光環(huán)境下,圖像經(jīng)過(guò)Deep White-Balance與Zero-DCE聯(lián)合處理后恢復(fù)了真實(shí)色彩并增強(qiáng)了紋理細(xì)節(jié),,檢測(cè)模型平均精度均值(mAP)達(dá)到0.849,,相比于處理前提升0.038。而嵌入RSBottleneck-CW模塊的YOLO v5s對(duì)特征圖噪聲表現(xiàn)出了很強(qiáng)的適應(yīng)性能,,不管是否對(duì)圖像進(jìn)行深度增強(qiáng),,其mAP與F1值始終比原始YOLO v5s更高,夜間環(huán)境下mAP和F1值最高分別為0.902,、0.844,,補(bǔ)光環(huán)境下mAP和F1值最高分別為0.868,、0.817。檢測(cè)模型檢測(cè)出果實(shí)與果串后,,利用邊框匹配算法可以獲取到串番茄最終的成熟度,。當(dāng)串番茄成熟度為90%~100%時(shí),夜間環(huán)境與補(bǔ)光環(huán)境下串番茄成熟度識(shí)別平均絕對(duì)誤差分別為1.837%,、1.067%,,可為串番茄采摘機(jī)器人夜間自動(dòng)采收作業(yè)提供決策依據(jù)。

    Abstract:

    Robotic automated harvesting proves to be an efficient solution for greenhouse tomato cluster harvesting operations. The ripeness of tomato clusters stands as a vital criterion influencing the decision-making process for the harvesting robot. Aiming to employ Deep White-Balance and Zero-DCE deep neural networks for color cast correction and shadow detail enhancement in tomato images to enhance image quality by addressing color cast issues and improving local illumination in both fill light and night environments, the concept of the deep residual shrinkage network was introduced, incorporating the RSBottleneck-CW module into YOLO v5s. This module conducted soft threshold processing on the feature map to effectively suppress noise interference in the image. Experimental results demonstrated that in the night environment, after enhancing the image solely with the Zero-DCE algorithm, the recall of the detection model reached 0.924, capturing more tomato fruits and trusses. In a supplementary light environment, the image underwent joint processing with Deep White-Balance and Zero-DCE to restore authentic colors and enhance texture details. This resulted in the detection model achieving an mAP of 0.849, reflecting a 0.038 increase compared with that of the before processing. The YOLO v5s integrated with the RSBottleneck-CW module exhibited robust adaptability to feature map noise. Irrespective of whether the image underwent depth enhancement, its mAP and F1-Score consistently surpassed those of the original YOLO v5s. In the nighttime environment, the highest recorded mAP and F1-Score values were 0.902 and 0.844, respectively. Similarly, in the supplementary light environment, the peak mAP and F1-Score values reached 0.868 and 0.817, respectively. After the detection model detected the fruits and trusses, the final ripeness level of the tomato clusters were determined by using the bounding boxes aligning algorithm. In the ripeness stage of tomato clusters ranged from 90% to 100%, the average absolute errors in ripeness recognition under nighttime and supplementary light conditions were 1.837% and 1.067%, respectively. These findings can serve as decision-making criteria for night automated harvesting operations of tomato-picking robots.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王新,唐燦,朱建新,郭彩平,劉藝豪,王書(shū)茂.基于深度增強(qiáng)與特征抗噪的夜間串番茄成熟度識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(4):363-374. WANG Xin, TANG Can, ZHU Jianxin, GUO Caiping, LIU Yihao, WANG Shumao. Tomato Cluster Ripeness Recognition at Night Based on Depth Enhancement and Feature Noise Reduction[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(4):363-374.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-02-29
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2025-04-10
  • 出版日期:
文章二維碼