ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于TD-BlendMask的復(fù)雜環(huán)境三七葉片病害實(shí)例分割方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

云南省科技廳重點(diǎn)項(xiàng)目(202201AS070034,、202305AM070006)和云南省高校重點(diǎn)實(shí)驗(yàn)室項(xiàng)目(KKPS201923009)


TD-BlendMask-based Approach for Instance Segmentation of Panax notoginseng Leaf Diseases in Complex Environments
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)三七葉片病害中灰霉病與疫病表型特征高度相似,、炭疽病等病害病灶區(qū)域小且形態(tài)復(fù)雜導(dǎo)致的圖像分割特征提取困難與識(shí)別精度不足問題,本文提出了Transformer-DCNv2-BlendMask(TD-BlendMask)三七葉片多類別病害圖像分割模型,。首先,,為了解決三七葉病害視覺相似問題,引入了Transformer編碼器來捕獲多種病害類別的長(zhǎng)距離依賴性,。其次,,可變形卷積網(wǎng)絡(luò)(DCNv2)通過引入偏移量,使其在分割各種復(fù)雜形狀的病害方面具有更好的適應(yīng)性,。最后,,與其他常用的實(shí)例分割模型(如BoxInst、ConInst、SOLOv2,、Mask R-CNN和YOLO v8-seg)在包含多類別疾病的三七葉片病害數(shù)據(jù)集上進(jìn)行比較,。實(shí)驗(yàn)結(jié)果表明,所提出模型精確度(AP)達(dá)到86.14%,,比基準(zhǔn)模型高3.17個(gè)百分點(diǎn),,相比經(jīng)典的Mask R-CNN模型高出4.37個(gè)百分點(diǎn)。在灰霉病,、疫病和炭疽病類別上,,分別提高0.16、4.32,、4.46個(gè)百分點(diǎn),。因此,本文所提出的方法為在復(fù)雜環(huán)境中準(zhǔn)確分割形狀復(fù)雜且視覺高度相似的病害提供了有效解決方案,,有助于實(shí)現(xiàn)病害準(zhǔn)確量化,。

    Abstract:

    Under practical Panax notoginseng cultivation scenarios, due to the visual similarities between diseases such as gray mold and plague, as well as small individual targets with complex and variable shapes of diseases such as anthracnose under natural conditions, current methods face a difficult problem of P.notoginseng leaf disease segmentation. A modified Transformer-DCNv2-BlendMask model for P. notoginseng leaf multicategory diseases image segmentation was proposed. To deal with the visual similarity problem and variable shape targets appeared on P. notoginseng leaf disease, a Transformer encoder to capture long-distance dependencies for multiple disease categories was introduced. And the deformable convolution networks v2 (DCNv2) showed a better adaptability of convolutional networks by enabling free-form deformation of the convolution to segment disease with various shape. The model and other instance segmentation models such as BoxInst, ConInst, SOLOv2, Mask R-CNN and YOLO v8-seg on the P. notoginseng leaf disease dataset, which contains multi-category diseases were compared. The results demonstrated the competitive performance of our model, achieving a average precision (AP) of 86.14%, outperforming the baseline BlendMask model by 3.17 percentage points and the previously best-performing Mask R-CNN by 4.37 percentage points. It also exceeded the baseline by 0.16 percentage points, 4.32 percentage points and 4.46 percentage points for the gray mold, plague and anthracnose categories, respectively. Thus, our method provides a robust solution for segmenting shape-variable and visually similar diseases in complex environments, helping to achieve accurate quantification of diseases.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊啟良,陳成,雷煉,周寧珊,楊玲.基于TD-BlendMask的復(fù)雜環(huán)境三七葉片病害實(shí)例分割方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(4):375-386. YANG Qiliang, CHEN Cheng, LEI Lian, ZHOU Ningshan, YANG Ling. TD-BlendMask-based Approach for Instance Segmentation of Panax notoginseng Leaf Diseases in Complex Environments[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(4):375-386.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-03-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-04-10
  • 出版日期:
文章二維碼