ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于XGBoost-SHAP的奶牛熱應(yīng)激預(yù)測(cè)與可解釋性研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

財(cái)政部和農(nóng)業(yè)農(nóng)村部:國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項(xiàng)目( CARS36)和國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2023YFD2000702)


XGBoost-based Heat Stress Prediction of Dairy Cows and SHAP-based Model Interpretation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為提高奶牛熱應(yīng)激預(yù)測(cè)模型的準(zhǔn)確性和可解釋性,,本研究采用奶牛紅外體表溫度和熱應(yīng)激潛在影響因子作為特征,,基于極限梯度提升算法(XGBoost)構(gòu)建個(gè)體熱應(yīng)激預(yù)測(cè)模型,并引入基于Shapley值的可加性特征歸因算法(SHapley Additive exPlanations,,SHAP)解釋預(yù)測(cè)結(jié)果,。選取了軀干,、前乳(UD)、臉部以及眼部的最高溫度(IRTmax)和平均溫度(IRTave)作為體表溫度變量,,并結(jié)合環(huán)境參數(shù)和奶牛相關(guān)變量構(gòu)建了特征子集,。結(jié)果顯示,熱應(yīng)激情況下,,奶牛4個(gè)部位的IRTmax和IRTave均顯著高于無熱應(yīng)激情況(p<0.01),。對(duì)比隨機(jī)森林、自適應(yīng)提升和梯度提升樹模型,,結(jié)果表明,,使用前乳平均溫度(IRTave_UD)作為輸入特征,并經(jīng)過網(wǎng)格搜索優(yōu)化的XGBoost模型在預(yù)測(cè)奶牛熱應(yīng)激方面表現(xiàn)最佳,,其準(zhǔn)確率為80.8%,,F(xiàn)1值為79.2%,ROC曲線下面積(AUC)為0.873,。SHAP分析表明,,前乳平均溫度(IRTave_UD)與熱應(yīng)激發(fā)生呈正相關(guān),而泌乳天數(shù)與其呈負(fù)相關(guān),,這兩者可作為奶牛熱應(yīng)激識(shí)別的關(guān)鍵指標(biāo),。研究結(jié)果可為奶牛舍夏季精準(zhǔn)降溫管理提供技術(shù)支持和參考。

    Abstract:

    Aiming to enhance the accuracy and interpretability of current heat stress prediction models for dairy cows, the extreme gradient boosting algorithm (XGBoost) was employed by using infrared body surface temperature and potential influencing factors. A Shapley value-based method, SHAP, was introduced to interpret the prediction outcomes. The maximum temperature (IRTmax) and average temperature (IRTave) from the trunk, fore udder (UD), face, and eyes were selected as body surface temperature variables, and environmental parameters and cow-specific variables were integrated to create a feature subset. The findings revealed that under heat stress conditions, the IRTmax and IRTave of the four body parts were significantly higher than that under non-heat stress conditions (p<0.01). Among the ensemble models compared, i.e., random forest, adaptive boosting, and gradient boosting decision trees, the XGBoost model, optimized through grid search and using fore udder infrared temperature (IRTave_UD) as a key feature, demonstrated the highest accuracy in predicting heat stress, achieving 80.8% accuracy, an F1 score of 79.2%, and an area under the ROC curve (AUC) of 0.873. SHAP analysis indicated that the average infrared temperature of the fore udder (IRTave_UD) positively correlated with heat stress likelihood, while lactation days showed a negative correlation. These two indicators were crucial for identifying heat stress in cows. The research findings can provide valuable technical support for precise cooling management in dairy barns during the summer season.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

嚴(yán)格齊,焦洪超,林海,李浩,施正香,王朝元.基于XGBoost-SHAP的奶牛熱應(yīng)激預(yù)測(cè)與可解釋性研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(4):408-414. YAN Geqi, JIAO Hongchao, LIN Hai, LI Hao, SHI Zhengxiang, WANG Chaoyuan. XGBoost-based Heat Stress Prediction of Dairy Cows and SHAP-based Model Interpretation[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(4):408-414.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-02-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-04-10
  • 出版日期:
文章二維碼